

Dimensionnement des fondations superficielles sous charge sismique

Youssef Abboud Terrasol

Sommaire

- Spécificité du dimensionnement sismique
- Dimensionnement conventionnel sous séisme
- Définition de l'action sismique : Prise en compte de l'ISS
 - Mécanismes de l'ISS
 - Effets de l'ISS sur le dimensionnement
- Calcul des impédances des fondations
 - Méthodes pseudo statiques
 - Méthodes dynamiques
- Perspectives
 - Dimensionnement en capacité
 - Prise en compte des non linéarités dans l'ISS

Spécificité du dimensionnement sismique

• Sollicitations des ouvrages dans la direction horizontale

Séisme du 11 mars 2011 au Japon

Spécificité du dimensionnement sismique

• Amplitudes élevée des sollicitations (exemple : France Métropolitaine)

+ effets de site (x S = 1 (rocher) à 1.8 (sol mou) $\rightarrow a_N$ peut atteindre 2,5 – 3,0 m/s² en France métropolitaine

Spécificité du dimensionnement sismique

• Amplitudes élevée des sollicitations (exemple : Belgique)

+ effets de site (x S = 1 (rocher) à 1.8 (sol mou) \rightarrow a_N peut atteindre 2,0 – 2,5 m/s² en Belgique

Stabilité sismique des fondations

• Liquéfaction : perte de résistance des sables saturés

Séisme Niigata (1964)

Stabilité sismique des fondations

Instabilité par défaut de portance

Instabilité par perte de portance

Capacité portante statique

$$N_{max} = \begin{cases} cN_{c} + \frac{\gamma B}{2}N_{\gamma} & XA & Méthode (indirecte) à partir des propriétés de cisaillement (c, \phi) \\ \\ k_{p} p_{le} & XA & Méthode (directe) à partir du pressiomètre (NF P 94-261) \\ \\ k_{c} q_{ce} & XA & Méthode (directe) à partir du pénétromètre statique (NF P 94-261) \end{cases}$$

Effets du séisme = réduction de la capacité portante, par :

- Inclinaison de la charge (efforts d'inertie horizontaux dans la structure)
- Excentrement de la charge (efforts d'inertie appliqués à une hauteur)
- Forces d'inertie dans le sol

Effets du séisme

• Diagrammes d'interaction : enveloppe des efforts (N, V, M) admissibles

Instabilité par perte de portance Méthode pseudo statique

• Annexe F de l'Eurocode 8 – Partie 5 (Pecker 1997)

$$f(\overline{V},\overline{N},\overline{M},\overline{F}) = \frac{(1-e\overline{F})^{c_T}(\beta\overline{V})^{c_T}}{\overline{N}^a \left[(1-m\overline{F}^k)^{k'} - \overline{N} \right]^b} + \frac{(1-f\overline{F})^{c_M}(\gamma\overline{M})^{c_M}}{\overline{N}^c \left[(1-m\overline{F}^k)^{k'} - \overline{N} \right]^d} - 1 \le 0$$

$$\overline{V} = \frac{\gamma_{Rd}V}{N_{\text{max}}} \qquad \overline{N} = \frac{\gamma_{Rd}N}{N_{\text{max}}} \qquad \overline{M} = \frac{\gamma_{Rd}M}{BN_{\text{max}}}$$

a_h est l'accélération du sol

	Sol purement	Sol purement
	cohérent	frottant
а	0,7	0,92
b	1,29	1,25
С	2,14	0,92
d	1,81	1,25
е	0,21	0,41
f	0,44	0,32
m	0,21	0,96
k	1,22	1
k'	1	0,39
Ct	2	1,14
Cm	2	1,01
Cm'	1	1,01
β	2,57	2,9
γ	1,85	2,8

Effets du séisme

• Sol purement frottant

Effets du séisme

• Sol purement cohérent

Instabilité par perte de portance – Effets du séisme

Page | 13

Instabilité « géométrique »

Glissement

Justification de l'effort horizontal par rapport à l'effort vertical

Renversement

• Justification de l'excentricité

$$1 - \frac{2M}{BN} \geq \frac{1}{15}$$

Instabilité sismique

Définition du torseur d'efforts sismique

Avec ou sans effets d'interaction sol structure

Mécanismes d'interaction sol structure

- Interaction cinématique : liée au contraste de rigidités structure/sol
- Interaction inertielle

- Considérée pour les fondations encastrées
- Modification du signal sismique (d'entrée) en présence de l'ouvrage

Mécanismes de l'interaction sol structure

- Interaction cinématique
- Interaction inertielle : liée aux forces d'inertie dans la structure

- La structure devient source de vibrations
- Affine le torseur sismique sur la fondation

Interaction inertielle

Effets de l'interaction inertielle

• Allongement de la période : bénéfique pour le dimensionnement

Effets de l'interaction inertielle – Exemple

• Exemple : Réponse sismique d'une pile de pont

Effets de l'interaction inertielle – Exemple

• Spectre de réponse

$K_v = ?$ $K_H = ?$ $K_M = ?$

- Approche pseudo statique ou approche dynamique (fonctions d'impédance)
- Solutions analytiques, solutions numériques, modèles hybrides ...

Solutions pseudo statiques

- Solutions basées sur la théorie d'élasticité
- Utilisation des propriétés G_d, v_d « dynamiques » (faibles déformations)

• Expressions analytiques pour K_H , K_V et K_M

Solutions analytiques

Fondations circulaires

Adaptation aux fondations rectangulaires

Terme de raideur	k ₁	k ₂	k
Raideur verticale	0.37	0.77	0.25
Raideur horizontale selon B	0.50	0.63	0.15
Raideur horizontale selon L	0.37	0.77	0.25
Raideur en rotation selon B	1.12	0.23	0
Raideur en rotation selon L	0	1.40	2.40

Solutions numériques

- Modélisation directe du massif sous la fondation
- Utilisation des propriétés G_d, v_d « dynamiques »

Méthodes hybrides : exemple du modèle Tasplaq

- Maillage numérique de l'élément de fondation (éléments de plaque)
- Solutions analytiques (Mindlin) pour le sol support (multicouche élastique)

Effets fréquentiels

• Effet de masse Modification de la raideur apparente en fonction de la fréquence de la sollicitation

Effet d'amortissement

Dissipation (effective ou apparente) de l'énergie de déformation

Amortissement matériel Dissipation de l'énergie dans le

matériel représentant le sol

Amortissement radiatif

Radiation à l'infini des ondes transmises par la structure au sol

Modèle analogique :

- Ressort k(ω)
- Amortisseur C(ω)

Fonctions d'impédances

 $F(t)=Z(\omega).u(t)$ $Z(\omega)=K(\omega)+i\omega C(\omega)$

(Cuira et Druie, 2017)

• Solutions analytiques, modèles hybrides ...

Fonctions d'impédance dynamiques

 $Z(\omega) = K(\omega) + i\omega C(\omega)$ $= K_{stat} (k + ia_0 c)$

Solutions analytiques

(Deleuze 1967)

Fonctions d'impédance dynamiques Solutions hybrides

Méthode de sous structuration

Superposition de trois réponses

(b) Sol sans structure (champs libre)

(c) Volume de sol excavé (ou empreinte de la structure)

(d) Structure seule

Exemples : Logiciels SASSI (UC Berkeley) et MISS3D (ECP)

Approche performantielle

(Performance Based Design)

- Dimensionner pour répondre à un ensemble d'exigences prédéfini
 - Non effondrement de la structure
 - Seuil de déplacement (Pender 2014 NF P94-261)
 - Déplacement horizontal < Déplacement sous séisme
 - Déplacement vertical ~ 5 cm
 - Déplacement vertical sous séisme < moitié du tassement statique
 - Distorsion < 1/150
 - Forcer des rotules plastiques à des endroits spécifiques

Prise en compte des effets non linéaires de l'ISS

Thèse Y. Abboud 2017

Prise en compte des effets non linéaires de l'ISS

- et du déplacement vertical sous séisme de la fondation

Calcul	V _{max}	F _s	F _s	u _{HR}	u _{vR}
	(MN)	Glissement	Portance	(cm)	(cm)
FIX (sans ISS)	96	0.64	0.79	0.00	0.00

ISS Linéaire

Calcul	V _{max} (MN)	F _s Glissement	F _s Portance	u _{HR} (cm)	u _{vR} (cm)
FIX (sans ISS)	96	0.64	0.79	0.00	0.00
ISS Linéaire	68	0.89	0.81	0.00	0.00

ISS NL + Glissement

Calcul	V _{max} (MN)	F _s Glissement	F _s Portance	u _{HR} (cm)	u _{vR} (cm)
FIX (sans ISS)	96	0.64	0.79	0.00	0.00
ISS Linéaire	68	0.89	0.81	0.00	0.00
ISS Non linéaire + G	64	1.00	0.89	0.20	0.00

ISS NL + Portance

Calcul	V _{max} (MN)	F _s Glissement	F _s Portance	u _{HR} (cm)	u _{vR} (cm)
FIX (sans ISS)	96	0.64	0.79	0.00	0.00
ISS Linéaire	68	0.89	0.81	0.00	0.00
ISS Non linéaire + G	64	1.00	0.89	0.20	0.00
ISS Non linéaire + P	64	0.93	1.00	0.23	0,10

ISS NL + Glissement + Portance

Calcul	V _{max} (MN)	F _s Glissement	F _s Portance	u _{HR} (cm)	u _{vR} (cm)
FIX (sans ISS)	96	0.64	0.79	0.00	0.00
ISS Linéaire	68	0.89	0.81	0.00	0.00
ISS Non linéaire + G	64	1.00	0.89	0.20	0.00
ISS Non linéaire + P	64	0.93	1.00	0.23	0.10
ISS Non linéaire + P + G	63	1.00	1.00	0.25	0.20

ISS NL + Glissement + Portance + Ecrouissage

Calcul	V _{max} (MN)	F _s Glissement	F _s Portance	u _{HR} (cm)	u _{vR} (cm)
FIX (sans ISS)	96	0.64	0.79	0.00	0.00
ISS Linéaire	68	0.89	0.81	0.00	0.00
ISS Non linéaire + G	64	1.00	0.89	0.20	0.00
ISS Non linéaire + P	64	0.93	1.00	0.23	0.70
ISS Non linéaire + P + G	63	1.00	1.00	0.25	0.20
ISS Non linéaire + P + G + E	50	1.15	1.21	0.81	1.15

Merci de votre attention !

Youssef Abboud

Terrasol y.abboud@terrasol.com

